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STABILITY OF TWO-FLUID WHEEL FLOWS
by Eli Reshotko® and Carl F. Monnin

Lewis Research Center

SUMMARY

The stability of an incompressible two-fiuid wheel flow to infinitesimal
helical disturbances is considered for the case where the inner fluid is heavy
and the outer fluid is light. This situation may be viewed as a Rayleigh-
Taylor problem in the frame of the rotating fluild and is dynamically unstable.
As the density ratio of inner to outer fluid increases, the calculated growth
rates increase and approach a limiting value as the density ratio becomes in-
finite. Growth rates alsc increase with increasing axial as well as azimuthal
wave number. TFurthermore, the presence of a fixed boundary outside the light
fluld tends to have negligible influence on the growth rates as the density
ratio becomes very large.

INTRODUCTION

In some of the proposed gaseous nuclear rocket schemes, vortex containment
is suggested for the maintenance of a critical mass of fissioning gaseous fuel
with minimal losses (refs. 1 to 3). The present study is based upon Evvard's
concept of the wheel-flow reactor (ref. 3). In this reactor concept, a core of
heavy fissioning gas in solid-body rotation is surrounded by an outer light gas
coolant also in solid-body rotation at the same angular velocity. Further
description of the hydrodynamic, nucleonic, and heat-transfer aspects of the
wheel-flow reactor is given in reference 3.

Unfortunately, the steady-state two-fluid wheel flow of a heavy gas core
surrounded by a lighter, outer gas is unstable. The nature of this instability
is the subject of this report.

The stability of rotating flows is considered in detail by Chandrasekhar
(ref. 4), but the reported treatments of wheel flow are limited to a single
fluid in a bounded geometry. On the other hand, Chandrasekhar also considers
the Rayleigh-Taylor stability problem for a stratified but nonrotating flow.
Of interest here is the combination of these two cases which may in fact be
viewed as a Rayleigh-Taylor problem relative to the rotating fluid. This fact
was also pointed out by Melcher (ref. 5) in his general formulation for
electrohydrodynamic waves in rotating systems.

The wheel flow treated herein was idealized to facilitate obtalning solu-

*Case Institute of Technology, Cleveland, Ohio.
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Figure 1. - Effect of viscosity on growth rates of infinites-
imal disturbances.
Figure 2. - Geometry of two-fluid whee! flow.

tions; it consisted of two incompressible, immiscible fluids separated by a
cylindrical interface. While the time-independent wheel flow is compatible
with the complete Navier-Stokes equations including effects of viscosity, the
viscous effects were omitted in this treatment of the stability of the config-
uration. While this is a serious omission, the results yielded by this sim-
plification are likely to be pessimistic. As pointed out by Chandrasekhar
(ref. 4) for rotating fluids and also by Bellman and Pennington (ref. 8) in
the case of the Rayleigh-Taylor problem, the effects of viscosity on the growth
rates of infinitesimal disturbances tend to be as in figure 1. The salient
effect of viscosity is a severe diminuation of the growth rate of short wave-
length disturbances such that the maximum growth rate occurs at some finite
axial wavelength. The results obtained herein should be reascnably correct in
the long wavelength limit. The effect of azimuthal wave number on the growth
rate will suggest whether large or small core fragments tend to break away more

rapidly.

BASIC FIOW

The geometry of the two-fluid wheel flow is shown in figure 2. The problem
is most conveniently handled in cylindrical coordinates. The axial or z-
coordinate is directed into the paper. The inner fluid is given the subscript
1, while the subscript 2 refers to the outer fluid. The interface between them
is at radius a. The outer boundary at radius R bounds the outer fluid.

The idealized basic flow is considered herein to be only azimuthal and
solely a function of the radial coordinate. The following equations are the
pertinent continuity and momentum equations, respectively:
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(A1l symbols are defined in appendix A.)

Radius, r*

Figure 3. - Pressure distribution for inner The general solution for azimuthal velocity
fluid density greater than outer fluid density. obtained from equation ( 1c ) is
* x B
V' o= AT + ¢ (2)
r

The wheel flow V = Qr is the pertinent sclution for the inner fluid. If the
outer boundary is assumed to rotate at velocity @GR, then V = Qr 1is the com-
plete solution and is compatible with the Navier-Stokes equatlons including
viscosity. The pressure distribution in the wheel flow from solution of equa-
tion (1b) is

2 42
P*=P2§+pl :; OS_I'*SB. (3a)
2,2 2 2 2
* (°a Qe(x*c - a%) *
= + LERC MY
PoTPLTZ T P2 2 asr SR (3b)

For a heavy fluid core surrounded by a light fluid, the inertial nature of the
instability is apparent from the pressure distribution for pq > ps (fig. 3).

If an element of heavy fluid from just inside the interface (r* = ri) is dis-

placed to just outside the interface (r* = rg) while conserving its angular
momentum, a pressure gradient dp*/ar’= pl/rgfvi(ri/rzi]z(represented by the
dashed line in fig. 3) is required for radial balance. However, the available
pressure gradient at rg is ap*/ar* = pz(sz/rz) (solid 1line), which for
wheel flow is pz/rgtvi(rg/r{)]z. Thus in the limit of infinitesimal displace-

ment Brg - r{)/ri << l] as long as pl/p2 > 1 +the heavy fluid encounters a
pressure gradient inadequate for radial balance on penetrating the interface



and the element of heavy fluid will continue its motion outward. This behavior
is characteristic of Rayleigh-Taylor instabilities.l

FORMULATION OF STABILITY PROBLEM
Disturbance Equations

The equations governing infinitesimal disturbances are obtained from a
linearization of the complete equations of motion about the assumed basic flow.
As previously mentioned, only inviscid disturbance motlons will be considered

in this treatment. TFor the basic wheel flow V¥ = qor* , the disturbance equa-

tions for each of the fluids are:

Continuity:
L*ai( *)+Ij"*g—§-+-:-lr—i=o (4a)

Momentum:
g%; +Q 22* - 20v* = - % éi; (4b)
g%+ﬂg—v—+20u =-gi—*§ (4c)
ARl R b ()

These equations may also be written in dimensionless form for later convenlence.
When the disturbance quantities and the independent variables are referred to
the following reference values,

viep = Q& (5a)
*
Lrer = a (5b)
*
Prer = pQZaZ (5¢)

lThe argument presented here parallels that given by von Karman (see Lin,
ref. 7) in support of Rayleigh's stability criterion for rotating fluids. The
equivalent to Rayleigh's criterion for a stratified incompressible ideal fluid
(inviscid and not thermally conducting) is that the flow configuration is
stable if 4d/dr(pV2r2) > 0. The two-fluid wheel flow under consideration
(pl/p2 > 1) is clearly unstable by this criterion.
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trer = Q (5a)
Wer = O (5e)
The following equations are the dimensionless disturbance equations:
10 1dv , ow
= =25 4+ 22X =
Se (ru) + S5t 0 (6a)
du , ou omn
=+ = - 2V=s - = 6b
3t o ¥ ot (6b)
ov , ov 1 on
St TSgtauc=-735g (6c)
ow ., ow _  om
xS (64)

Since the coefficients of equations (6) are independent of t, 9, and =z,

the equations allow disturbances of the form q(r)ei<k2+m9"um), where q(r) is

a complex disturbance amplitude, k¥ and m are the axial and azimuthal wave
numbers, respectively, and & 1s a complex frequency. The wave numbers k
and m are real numbers; m 1is an integer. The real part of ® dis the rota-
tional frequency of the disturbance flow, while the imaginary part i repre-
sents the amplification rate. Disturbances are growing, neutral, or decaying
according to whether w; 1s positive, zero, or negative, respectively. For
the assumed disturbance form, equations (6) becone

u imv

u' + =+ =— + ikw = O (7a)
r r
iy + 2v = ! (7b)
o~ imx
idv - 2u = = (7e)
idw = ikn (7a)

where primes denote differentiation with respect to r and ®=w - m 1is

related to the angular velocity of the disturbance pattern relative to the mean
rotation.? Thus, to an observer at a given axial location 2z and moving with
the mean rotational velocity €, the problem may be viewed as a Rayleigh-Taylor

2Tn terms of dimensional quantities, Sx/m = 0/t* - @ where (8/t") is
the absolute angular velocity of the disturbance pattern. To an observer at a
given axial station =z, the quantity @p= (m/Q)(6/t" -q) is proportional to the
angular velocity of the disturbance pattern relative to the mean rotation. The
dimensionless angular velccity of the wave is simply Q/Qt* = 1 + Bp/m.



problem with a centrifugal rather than a gravitational driving force.

From equations (7b), (7c), and (7d4), the velocity fluctuation amplitudes
may be expressed in terms of :

“ = — (8a)
4 - w
2! - ® %?
v = o (8b)
4 - W
W=%T£ (8c)
W

Substitution of equations (8) into the disturbance continuity equation (7a)
yields the differential equation for the pressure fluctuation amplitude:

1 2
a o+ I (kZA@ + §L>ﬂ =0 (9)
r 2
r
where
N2 =1 - 5% (10)
0

The general solution to equation (9) is any linear combination of Bessel
functions of the first and second kind of the proper order and argument. The
form used herein is

= Ady(ikAr) + BHGY) (ikAr) (131)
where the first term is regular at the origin while the second is regular at

infinity, provided that the real part of kA is positive for large values of
kA,

In the inner fluid, the second term is inadmissable so that
7ty = AyJp(ikar) (12)
In the outer fluid, the general solution is
- - (1) (4
i, = Ay (ikAr) + B~/ (ikAr) (13)

If the outer boundary i1s at infinity, the coefficient Az must vanish as a
consequence of the proper satisfaction of boundary conditions.



Boundary Conditions

The boundary condition at r = O has already been applied. The remaining
conditions are that the radial velocity must vanish at r = R and that the
radlal velocity and normal stress be continuous at the interface r =1
(r = a), These conditions are treated consecutively.

Radial velocity u =0 at r = R. - From equations (8a) and (13),

1 m i ' (l)
0 = AZ UN)[Im(lkAR)] - E.M—Rk_&_). + B2 CT)[ngnl) (]_kAR)] _ mHm . (ik/R)
or
H(R)
Ay = 'Bza?FT_T (14)
where
(l) ' ZmH.[(nl)(lkA't‘)
H (r) = [Hm (ikAr)] - i (1s)
and
J..( ikAr
o) = [rganan] " - D (16)

As R approaches infinity, A2 approaches zero, as seen from equa-
tion (14).

Radial velocity wu; = u, at r = 1. - From equations (8a), (12), (13),

(15), and (16), this condition yields the following relation between A; and
B2:

A Ho(n)y H(®)
5, = £ " £.0) ()

Continuity of normal force at interface. - The satisfaction of this
boundary condition is accomplished by obtaining the sum of pressure plus cen-
trifugal forces for each fluid at the displaced location of the interface and
then equating these sums. Because two separate fluids with different densities
are involved, the force balance is carried out in physical variables:




2,2 2
Qe 242
Py t P T3 [1 + él(l)] + py9°afny (1)

2.2
Q2g2 poQita
= po + oy L2+ E 1+ g,(1)fF - 1% + p,02an,(1) (18)

When squares of disturbance quantities are dropped, the linearized form of
equation (18) becomes

p[E10) + 5y (1)] = pgfeatn) + mp(1)] (19)

The amplitude of the radial interface displacement & is obtained by a time
integral of the velocity in the rotating frame; that is,

P

u
£ = = (20)

General Dispersion Relation

After the appropriate substitutions are made into equation (19), the
following dispersion relation 1s obtained:

~2 P - (21)
Hy(ikA)  H(R) Jp(ikA)
S IR ST o (k)
Ha(1) Sy(R) ACE
Aa(1) S (R)

where the ;Hm and afﬁ functions are those defined in equations (15) and (16)
and A is defined in equation (10). The dispersion relation (21) is a complex
equation. In fact, since the complex unknown ® appears in the arguments of
the Bessel functions through A, solutions to the dispersion relation (21) are
probably best obtained by an iterative trial-and-error procedure. Such a
procedure has been employed to obtain numerical solutions for arbitrary complex
frequencies where the Bessel functions for arbitrary complex arguments are
evaluated by the method of reference 8.

The dispersion relation (21) has multiple roots, not all of which have
physical significance. This difficulty arises particularly because of the
agsumption regarding the positiveness of the real part of A that was made in

choosing the Hankel function of the first kind Hél) rather than the Hankel
function of the second kind Héz) for the general solution (11). The appro-

8



priate roots of the dispersion relation will be sorted out by examination of
various limiting solutions of the dispersion relation (21).

Before proceeding, some remarks are in order on the effect of the outer-
most boundary at r = R. The boundary condition that u =0 at r =R enters
the dispersion relation (21) through the ﬂm(R)A};(R) terms in the first group-

ing of the denominator of the right side. For large inner to outer-density
ratio pl/p2 > 1, the first portion of the denomlinator is small compared with

that term which has pl/p2 as its coefficient, and its effect on the result
is very weak. Furthermore for large arguments (kAR),EHm(R)A}E(R) ~ g=2K/R
becomes quite small. For the values of pl/pz and R of interest in wheel-

flow reactors, the stability charactersitics are essentially those of the un-
bounded configuration. The solutions presented herein are, therefore, for the
unbounded configuration R - o,

SOLUTIONS TO DISPERSION RELATION FOR UNBOUNDED CONFIGURATION

For the unbounded configuration, Eﬂm(R)éfﬁ(Ri] - 0 and the dispersion
relation (21) reduces to

p
=-1
~ 2
@ - 4 = p_]_. (22)
1 ) P2
(l) . 1 . 1
[ (um)]r:l w [Jm(lkAr)]r=l .
w1) (ika) ® g, (ika) B

Solutions to dispersion relation (22) are obtained and discussed for
axially symmetric disturbances (m = 0) and then for the helical disturbances
with flute number m different from zero.

Axially Symmetric Disturbances

For axially symmetric disturbances (m = 0), equation (22) becomes

- <El - 1>(kA)
a2 = C2

[ )] ey [ ag(axa)

-Hl(ﬂ () | Py |-EIL(EA)

(23)



In this particular case ® = w since m = 0. Solutions are now sought subject
to the condition that the real part of A 1is greater than zero. Assume for
the moment that for m = 0, A 1is real and positive. Then, the bracketed
ratios of Bessel functions in equation (23) are real and positive so that the
right side of equation (23) is real but always negative. Since the left side
of equation (23) is just @PAS, a solution is possible for negative real values
of W2 or purely imaginary values of @, which are obtained for

p
iH(L) (i) | o, | T.(ikA)
4 Ol P 'O :
R Rl S D 0)
> .
Po

From the definition of A@, these are the only admissible solutions with
Ay > 0. Thus the axially symmetric disturbances may be described as standing
waves (@, = 0) that are amplified (wj > 0).3

- Solutions to dispersion relation (23) were obtained (by hand calculation)
for density ratios pl/p2 of 2, 10, 100, and «. These results are shown In
figure 4. As expected from the qualitative discussion in the INTRODUCTION, the
growth rates increase with increasing density ratio. For density ratios pl/pz
greater than about 10, the results are not very different from those for an
infinite density ratio, which indicates that at these density ratios the pres-
sure in the outer fluild has negligible effect in decelerating a displaced fluid
element. For large axial wave numbers, the results are well represented by the
asymptotic solution to equation (23) for large kA obtained in appendix B,

namely,
wi=‘[(7k(-$—)-(4+2#+...) (25)

k= — X8 (26)

and

where

R = —— (27)

3Both amplification (wi > 0) and decay (wi < O) of the disturbances are
possible. Only the possible amplification, however, is relevant to the assess-
ment of the stability of the configuration.

10



Disturbance growth rate, u;

Solutions for very long wave-
] lengths k - O are obtained at
Ratio of inner to finite kA at the value corre-
4 —t— outer fluid sponding to the equal sign in equa-
density, B tion (24). Since kA for axially
P1IPy symmetric disturbances is always
3 reater than 4, the solutions (25)
100~ / g J
224444:::/f: to (27) are good representations of
;?¢///75/ the results of figure 4 for all
2 /¢4fff/// wave numbers and density ratios.
/
/
1 455/// P 2 Nonaxially Symmetric
// // ] 3
Aﬁf’// Disturbances

0 2 4 6 8 10 12

Axial wave number, k For the nonaxlially symmetric

disturbances, the dispersion rela-
tion (22) is solved numerically by
trial and error on an IEM 7094 com-
puter with the pertinent Bessel functions for arbitrary complex arguments cal-
culated according to the method of reference 8. The results for density ratios
2, 10, and 100 are shown in figure 5. The numerical results of these densities
agree well with asymptotic solutions to dispersion relaticn (22) in both the
long-wavelength k - O and the short-wavelength limits (appendixes C and D,
respectively).

Figure 4. - Growth rates of axially symmetric disturbances in un-
bounded configuration,

Limiting solution for long wavelength. - Long-wavelength solutions k —» O
for nonaxially symmetric disturbances are sought in the 1limit kA - O, despite
the aforementioned result for m = O. The pertinent solution (from appendix C)
is

&= -5 (28a)

or
wp = m - % (28Db)

and
w; = ——m—ﬁR-_—-l— (29)

where ® dis defined in equation (27). This solution satisfies the condition
Ay > O (appendix C).

Limiting solution for short wavelength. - From appendix D, the leading
terms of the solution of the dispersion relation (22) in the 1limit kA - «» are

11
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o~y m
= - 30
&y =2 (30a.)
1,0
or
Wp = m{l - —2-21—::2— (30pb)
f50f o
and
@ =®; 0 (31)
and
kA
k = l7§ (32)
1+ 24
®i,0
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Where

_ [x2 1
wi’o_‘/@_(4+m2+...) (33)

In these expressions, kA is a real number. Note that @i, 0 1s independent of

the flute number m and is identical to the asymptotic result for axially
symmetric disturbances. The dependence of i on flute number m is of higher
order, as is the departure of kA from the real axis.

The numerical solutions presented in figure 5 are entirely consistent with
these limiting forms. The nonaxially symmetric disturbances are growing waves
that for long wavelengths rotate at 1 - l/mﬁ of the angular velocity of the
basic flow. As the wave number increases, the angular velocity of the wave in-
creases asymptotically and approaches the basic flow angular velocity in the
short-wavelength limit. For kink instabilities (m = 1), the increase in wave
angular velocity occurs rather abruptly at dimensionless axial wave numbers
between O and 1. The waves at higher flute numbers rotate at higher fractions
of basic flow angular velocity and approach that velocity more gradually with an
increase in wave number. The growth rates themselves generally increase with an
increase in flute number m at all axial wave numbers. An exception occurs
for m=1 near k = 1/2 for the density ratios 10 and 100. This exception
is as yet unexplained. As expected, the level of growth rates increases with
increasing density ratio in about the same way that it did for axially
symmetric disturbances. ZFor large axial wave numbers, the growth rates ap-
proach the wi,0 given by equation (33) regardless of flute number.

REIEVANCE AND SIGNIFICANCE OF RESULTS TO WHEEL-FLOW REACTOR

The wheel-flow reactor (ref. 3) consists of rotating hot compressible
gases, where the inner fissionable fluid may be quite a bit hotter than the
outer light gas propellant. The interface between these two fluids will not be
sharp because of the diffusion of heat and because of species concentration
diffusion. The treatment of such a flow in terms of two constant-density
immiscible flulds dis sufficiently idealized that only qualitative statements
may be made to relate the results of the present stability calculations to an
actual wheel-flow reactor. Such qualitative statements are expected to have
some validity because, as previously stated, the instability is primarily iner-
tial. The statements in this section are based on the premise that the normal
mode disturbances with the largest growth rates are expected to be the most
troublesome.

For conceivable molecular weights and temperatures, the pertinent density
ratios are in the range 10 < pl/p2 < 100. TLittle qualitative or even quantita-

tive difference exists between the results (figs. 5(a) and (b)) in this range
of density ratios. Significant reductions in growth rate are obtained only for

pl/p2 < 2.

15



Although calculated growth rates increase with increasing axial wave
number in the present inviscid calculations, the large wave-number disturbances
(short wavelength) will be damped by the action of viscosity. This has been
verified by the present authors in a preliminary calculation not presented

herein.

Accordingly, the disturbances most likely to be amplified are those with
axial wavelengths larger than the interface radius, a (k < 2x). For this range
of axial wave numbers, the growth times are of the order of the period of basic
flow rotation and increase with azimuthal wave number or flute number. This
increase indicates a rather rapid growth of disturbances, with smaller core
fragments tending to break away most rapidly. Some of these troublesome long-
wavelength disturbances can perhaps by eliminated by choosing the reactor
length to be short, of order wa, so that the minimum axial wave number is

k =1,

The previous statements should be reexamined with the aid of a less ideal-
ized study that might include effects of compressibility and species diffusion.
The fissionable core would be substantially ionized and electrically conducting.
This suggests the possibility that additional stabilization might be obtained

by use of imposed axial magnetic fields.
SUMMARY OF RESULTS

The stability of an incompressible two-fluid wheel flow to infinitesimal
inviscid helical disturbances has been considered for the case where the inner
fluid is heavy and the outer fluild is light. The following are the important
results:

1. For large inmner~ to outer-fluid density ratio, the presence of a physi-
cal boundary outside the light fluid has only a very weak effect on the stabil-
ity characteristics. For the values of density ratio and outer radius of in-
terest in wheel-flow reactors, the stability characteristics are essentially
those of a configuration where the outer fluid is unbounded; this applies both
to the axially symmetric disturbances and to the nonaxially symmetric disturb-
ances.

2. The axially symmetric disturbances are identified as standing waves
that are amplified. The growth rates increase with increasing density ratio.
For density ratios greater than about 10, the results are not very different
from those for infinite density ratio.

3. The nonaxially symmetric disturbances are helically propagating waves
that are also amplified. For a given density ratio, the growth rates increase
with azimuthal wave number. The magnitude of the growth rates varies with den-
sity ratio in about the same way as for axially symmetric disturbances.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, May 24, 1965.
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APPENDIX A

SYMBOLS
A,B constants in solution of differential equations
a radius of two-fluid interface
H defined by eg. (15)
/ defined by eq. (16)
k axial wave number
L reference length
m azimuthal wave number or flute number

O(x) order of magnitude of x
g pressure

q(r) complex disturbance amplitude

R radius of outer boundary
« (Z)fE-
P2 P2
r radial coordinate
t time
u radial disturbance velocity
v azimithal velocity of basic flow, ar
v azimuthal disturbance veloecity
W axial disturbance velocity
Z axial coordinate
A defined by eg. (10), A2 = 1 - a;iz
] azimuthal coordinate
v kinematic viscosity

17



E radial displacement of disturbance flow

T disturbance pressure

P density

Q angular velocity of solid body rotation
w complex angular disturbance frequency
® ®-m

Subscripts:

i imaginary part

r real part

ref reference quantity

1 inner fluild

2 outer fluid

Superscripts:

*

dimensional quantity

! differentiation with respect to r

18



APPENDIX B

SOIUTION FOR LARGE WAVE NUMBER OF DISPERSION REIATION FOR AXTATLY

SYMMETRIC DISTURBANCES IN UNBOUNDED CONFIGURATION

The dispersion relation pertinent to axially symmetrie disturbances in the
unbounded configuration is that of equation (23), namely,

For large values of kA, the functions in brackets are approximately

iHél) (1ikA)

TT)——=1'§'11€A+
177 (1k4)

J~(ikA)
0 =l+—2‘—+
-iJlZikA5 2kA

The dispersion relation (23) may be written

kA 1

52

where
p
e
@:pz
L _
P2

Since, in this case, kA is real and o is purely imaginary,

DU

Now from the definition of A (eq. 10),

(23)

(BL)

(B2)

(B3)

(27)

(25)

19



w A = - 4
Thus,
2 2R 4
N = A T =:I_-l-kA
_—R—+4+_2+"' W'é’c
28

20

(B4)

" L) + .. (B5)
2R2

(26)



APPENDIX C

SOLUTION OF DISPERSION RELATION FOR UNBOUNDED
CONFIGURATION FOR SMALL WAVE NUMBER
The dispersion relation for the unbounded configuration R = «» (eq. (22))

is to be solved in the limit of small wave number k. The first step in so
doing is the evaluation of

[Jm( e )] 1:=1
Tp(iKA)

and

(D) (area) |
[Hﬂl ( kAr):|r—l

B ()

for small values of the argument kA. When the appropriate relations are used
for kA= 0O,

J,(ikAr) '
[J(im])r=l=m+... (c1)
m
and
[Héll) (im)]'
= r=l=—m+... (cz)

Héll) (ikA)

The dispersion relation (22) for small kA may be written

<c~02 - 4)(6%52 + 20 + m) -0 (c3)
where
p
144
P
_ "2
R = — (27)
1
Po
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The solutions of this dispersion relation are

o=+ 2 (ca)

5-1 (-1 . i\/mR_-i) (c5)

For solutions (C4), A% = 0. These solutions are rejected since the condi-
tions Ay > 0 1is not satisfied, namely, that disturbance amplitudes must decay
exponentially as the radius becomes infinite.

Solutions (C5) are both acceptable; that with a positive imaginary part

indicates growth of the disturbance, while the other indicates decay. Both are
possible, but only the growth solution is of interest here since it persists.
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APPENDIX D

SOLUTION OF DISPERSION RELATION FOR UNBOUNDED
CONFTIGURATION IN ILARGE WAVE NUMBER LIMIT

For large values of the argument kA,

[Jm(ikAr)]
Ir= 1
T (TRA) ~ kA(l - SR ) (D1)
and
[anl) (ikAr)]
r=1=-kA<1+—L+. ) ) (p2)
Héll) (1kA) 2kA

Equations (D1l) and (D2) are independent of the flute number m, to the order
considered, so that the dispersion relation (22) may be approximated as

IS 7 S N -G\ I (5 8
Foee 3 (Be)eo(p)

The last term in (D3) is of order 1/(kA)2 compared with the leading term on
the right side of (D3), and it will be neglected.

Equation (D3) may now be alternatively written

B+ Bl .= lm
@+ D wg o = o (D4)

2
where ®1,0 represents the grouping of terms

2 _ kA L

The right side of equation (D4) is always of unit order. For large values

of kA (therefore, large values of wi,O): the left side becomes very large and
suggests a solution of the form

® = iwg o + %l (Dea)
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where

“1
®i,0

<1 (D6Db)

Substituting (D6a) into (D4) and keeping only the leading terms of the expan-
sion yields

~ m
(l)l= - — (D7)
2
RPaf o
which is seen to satisfy (D6b) for kA >> 1 and is the leading contribution to
the real part of .

To obtain the asymptotic form of the wave number k, the quantity A must
first be evaluated. TFrom its definition,

=1 (10)
w
With the results (D6a) and (D7),
AP =1+ 4+a<1> (p8)
w? a
i,0 i,0

When terms are kept up to order l/w? 0 compared with the leading terms
2

~ . m

w = 1Cl)i,o - ?‘??sz— (D9)
i,0

A= _ 1+ 24‘ (D10)

“i0

and
kA

k = (D11)

1+ 24
“ 0

To this order of approximation, A 1s a real quantity, and, therefore, kA
is real as well.
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